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I discuss a general approach for the numerical construction of exact, nonlinear wave-train solutions to
the periodic Korteweg—de Vries (KdV) equation. The method is based upon the periodic inverse
scattering transform (IST), a nonlinear generalization of ordinary Fourier series. In this approach, the
solution to the KdV equation is represented by a linear superposition of nonlinearly interacting “hy-
perelliptic functions” which are the nonlinear “oscillation modes” or “degrees of freedom” of the equa-
tion; the amplitudes of the nonlinear modes are the constants of the motion for KdV evolution. Using
the periodic IST formulation, I numerically construct several low-degree-of-freedom wave trains and dis-
cuss some of their physical properties. The approach given here depends explicitly on the application of
methods from the field of algebraic geometry. Most of the examples presented are solutions to the KdV
equation which have not been previously considered; the solutions are “complex” in the sense that, in-
stead of being a single cnoidal wave, they are “multicnoidal” or “polycnoidal.” The IST spectrum often
provides a much simpler interpretation of the wave motion than that given by the linear Fourier trans-
form. This occurs primarily because the nonlinear wave trains constructed herein have a small number
of IST modes; on the other hand, these wave trains generally require a large number of linear Fourier
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modes for their description.

PACS number(s): 03.40.Gc

I. INTRODUCTION

The Korteweg—de Vries (KdV) equation is the classical
prototypical partial-differential equation for describing
long-wave motion in shallow water [1-3],

T’t+c077x+annx +B77xxx =0. (11)

The surface elevation 7(x,?) is a function of space x and
time z. The constant coefficients are given by ¢, =(gh)!’?,
a=3cy/2h, and B=c,h2/6; g is the acceleration of gravi-
ty. Subscripts in (1.1) refer to partial derivatives with
respect to x and ¢; h is the depth. The linearized KdV
equation [set a=0 in (1.1)] has the dispersion relation
wo=cok —Bk? and ¢ is the associated linear, dispersion-
less phase speed. Many other applications of the KdV
equation are known; these include internal waves [4],

0, =wy+cok(—n,/h +(k*h?/6m?){m*—4K (m)[3E (m)—2K (m)]}) ,

where the modulus m of the elliptic function is given by

the formula
mK*m)=(37*/2k?h%)y, (1.4)

and K(m), E(m) are complete elliptic integrals of the
first and second kind, respectively [10]. The mean of the
cnoidal wave over one period, 7, is given by

7‘7=(17c/‘rr)f:ﬂcnz{K(m)B/'rr;m }d6
=27, +4k>*h*K (m)[E (m)—K (m)] /37> .
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Rossby waves [4—6], plasma waves [7], and bores [8].
A rough measure of nonlinearity in a KdV wave train
is given by the Ursell number [9]

3 2
yr=21oko
2h

where 7, is a characteristic wave amplitude and L is a
characteristic wave length; A=a/6B. Thus, increasing
the amplitude and wavelength and/or decreasing the
depth results in an increase in the intrinsic nonlinearity of
a wave train.

The periodic cnoidal wave solution to (1.1) is well
known,

=MoL} ,

(x,t)=2n,cn*{[K (m)/7)(kx —o.t)|m}—7 . (1.2)

The associated dispersion relation has the explicit form

(1.3)

This latter expression has been removed from (1.2) to
provide consistency with the spectral description of the
KdV oscillation modes given in Sec. II.

When the modulus m — 0 the cnoidal wave approaches
a sinusoid

n(x,t)=n, cos(kx —wqyt) . (1.5)

When m —1 the cnoidal wave approaches the solitary
wave solution to KdV,
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n(x,t)=17, sech’(kx —Qt) , (1.6)

where A7, =2«? and the associated dispersion relation is
given by Q(k)=x(cy+4Px>).

The Fourier-series representation of the cnoidal wave
[10] can be used to recover the Stokes wave for KdV; al-
ternatively a simple Fourier-series expansion in both the
wave amplitude 7(x,?) and dispersion relation (k) [2]
also yields Stoke’s famous result as applied to the KdV
equation,

1(x,t)=1n, cosf+27.a, cos20+2n.a2cos30+ - - - ,
(1.7)

o=cok —Bk*+an.a k+ -, (1.8)

where a, =37, /8k?h?, 6=kx —w,t. The dispersion rela-
tion (1.8) contains an important dependence on the am-
plitude which is implicit in all KdV wave trains; a discus-
sion is given in Appendix A for the general case of
broad-banded wave trains.

Aside from the above classical results little else was—

known about the mathematical and physical structure of
the KdV equation until more recent developments were
obtained during and since the 1960s. Zabusky and

Kruskal (ZK) [11] discovered the elegant simplicity of

multiple solitary wave interactions by numerical integra-
tion of KdV on the spatial periodic domain (0<x <L; L
the period). They found that the shapes of the solitary
waves are preserved after collisions, with at most a phase
shift resulting from each pairwise interaction. KdV soli-
tary waves were renamed ‘‘solitons” by ZK in order to
emphasize their particlelike properties. These results
lead the way to the subsequent discovery of the general
spectral solution to the KdV equation on the infinite line
[9(x,£)—0 as |x|—o0; —o <x <] by Kruskal and
co-workers [12]. The approach, now known as the in-
verse scattering transform (IST), has since been extended
and applied to about 100 nonlinear wave equations
[13-17].

The spectral solution to the KdV equation for periodic
boundary conditions [i.e., n(x,t)=n(x +L,t),0<x <L] is
also known ([18-22], see also [14] and cited references).
IST for infinite-line boundary conditions may be viewed
as a nonlinear generalization of the linear Fourier trans-
form [14,16], while for periodic boundary conditions IST
is a nonlinear generalization of Fourier series [23-26].

In spite of all the rich mathematical structure now
known for the periodic KdV equation, very few specific
results are available for the description of complex wave
trains or wave fields. Boyd [27-30] and Bobenko and
Kubenskii [31] have undertaken a detailed analysis of the
simple case with just two nonlinear degrees of freedom.
The study of higher degree-of-freedom cases has evident-
ly not been previously undertaken. Here I attempt to ad-
dress this issue.

A major goal of the present paper is to demonstrate
that one can numerically construct complex, nonlinear
wave-train solutions to the periodic KdV equation using
only a few IST nonlinear Fourier degrees of freedom (one
to eight in the present study). Wave trains of this type
have been found instead to have many linear Fourier de-
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grees of freedom. The nonlinear Fourier structure of
KdV is here further exploited in order to understand
many solutions not easily accessible by direct numerical
integration of the equation.

Several aspects of the periodic KdV spectrum have
been emphasized by Osborne and Bergamasco [23,24]
and Osborne [26,32].

(1) The general solution to the KdV equation with
periodic boundary conditions consists of a linear superpo-
sition of hyperelliptic functions that may be interpreted as
a kind of nonlinear Fourier series [Eq. (2.1)]. The hyperel-
liptic functions are referred to as the “u;-function oscilla-
tion modes” of the periodic KdV equation, which are the
natural set of basis functions for all solutions of the equa-
tion. The u;(x,?) are functions of space and time which
reduce to cnoidal waves in the absence of interactions
with each other. Normally, however, nonlinear interac-
tions substantially distort the p;(x,¢) from the shape of a
single cnoidal wave.

(2) The nonlinear Fourier spectral amplitudes (the
amplitudes of the hyperelliptic functions or “open bands”
in the periodic IST spectrum) are constants of the motion
for the periodic KdV equation and hence do not vary in
space or in time. This parallels ordinary Fourier analysis,
where the Fourier coefficients are space and/or time-
independent constants when the wave motion is linear.

(3) The IST nonlinear Fourier series solution to KdV
[the linear superposition of the u;(x,?) as given in (2.1)]
reduces to a linear Fourier series in the small-amplitude
limit, where the y1;(x,?) decouple and become sine waves
[23]. This result reinforces the idea that periodic IST
may be viewed as a nonlinear generalization of ordinary
Fourier series.

Periodic IST has proven to be an important tool for
understanding the original numerical experiments of Za-
busky and Kruskal [11], which have been reinterpreted in
terms of the nonlinear Fourier approach [24]; in particu-
lar, the amplitudes of the solitons and the Fermi-Pasta-
Ulam (FPU) recurrence time were verified by periodic
theory. Other aspects of this problem, particularly for
motion dominated entirely by solitons, have also been
studied [25]. More recently Osborne [32] gave a
hyperelliptic-function spectral decomposition of the ZK
problem using the methods described herein. The analy-
ses entirely corroborate the results given by ZK and pro-
vide further insight into the role that solitons and
“coherent structures” play in systems with periodic
boundary conditions.

While the numerical examples given herein are strictly
periodic solutions to the KdV equation, there is absolute-
ly no reason why one should restrict oneself to only
periodic solutions. To this end I give a general schematic
which classifies both periodic and quasiperiodic solutions
of the equation. The classification scheme is in terms of
the KdV spectrum and hence provides for simple ways to
construct all of the periodic and/or quasiperiodic solu-
tions to KdV. These results anticipate many applications
which will undoubtedly follow with regard to a whole
host of quasiperiodic phenomena, including laboratory
and oceanic wave trains [33-35].

Many of the results discussed herein build on the work
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of Tracy [36] who first showed how to generate numerical
solutions using both the auxiliary variables and the ©
functions of a periodic and/or quasiperiodic soliton equa-
tion; he also demonstrated how to force the periodicity
condition for the particular case of a modulated plane
wave [37,38]. In the present paper I develop a method
for forcing periodicity for all spectral solutions to the
KdV equation.

The remainder of this paper is organized as follows. In
Sec. II the nonlinear Fourier-series solution to the KdV
equation is summarized. A brief description of the un-
derlying mathematical theory for the periodic KdV spec-
trum is also given. Section III presents and discusses
various examples of complex wave-train solutions to the
KdV equation. The appendixes are reserved for a discus-
sion of the numerical methods.

II. THE CONSTRUCTION OF PERIODIC
WAVE TRAINS WITH NONLINEAR FOURIER SERIES

A. Overview

The solution to the periodic KdV equation may be
written as a linear superposition of nonlinearly interact-
ing, nonlinear waves, referred to as hyperelliptic func-
tions, u;(x;¢),

N
Mx,t)=—E+2 3 [p;(x,0)—[;] . (2.1)

j=1
Here A=a/6B [a and B are physical constants given in
the paragraph following (1.1)], and the nonlinear Fourier
amplitudes a; and the means of the hyperelliptic func-
tions fi; may be specified in terms of a discrete set of ei-
genvalues {E;} which are 2N +1 (1<k <2N +1) con-

stants specified in Sec. II B,

a':E2j+1_E2j

I 2A ’ (2.2)
__EytEy .
#j“_’—z_

The wave numbers associated with the u; for a periodic
wave train are

. 27

k;=jAk , Ak=-—

L

for L the period. These are commensurable wave num-
bers, identical to those for an ordinary Fourier series. As
discussed below, quasiperiodic wave trains generally do
not have commensurable wave numbers. The phase of
the hyperelliptic functions is governed by specifying the
value of the u ;(x =0,1 =0). In principle, for every set of
{E}, one can determine the set of amplitudes a; and
means [1; [by (2.2)], associated with the wave numbers ;.
Furthermore, given specified amplitudes and commensur-
able wave numbers {a;,k;}, one can compute the set of
eigenvalues {E;} (see the discussion at the end of this
section and in Appendix A for numerical details).

Generally speaking the following constraint relation
holds:

(2.3)

Bjtaj<pjyi—ajig. (2.4)

This statement is equivalent to the fact that the eigenval-
ues in periodic IST are rank ordered,

Ey)j41>Ey; . (2.5)
As discussed in more detail below the following quanti-
ties govern nonlinearity in the periodic KdV equation:

szl/Gj:[|ﬁj+1_aj+1|_|/~7j_aj|]_1 ) (2.6)
where the G; are the “band gaps” in the theory defined
by

G,=Ey—Ey ;. @7

The greater the strength is of the nonlinear interaction
between the jth and (j —1)th components, the smaller
the quantity G; is. A related nonlinear mode amplitude
(an “open band” ) employed in Appendix A is

A;=Ey —Ey . 2.8)

The interrelationships of the quantities just discussed and
the set of eigenvalues {E,} in the periodic IST spectrum
are shown schematically in Fig. 1.

The direct scattering transform (DST) constitutes the
determination of the {E,}, the so-called “main spec-
trum,” from some initial wave train 7(x,0) as discussed
in Sec. II B. The nonlinear Fourier amplitudes a; (2.2) are

‘E

E7—l_*
Aa
-1 * A3 (open band amplitude)
Eq
G, (gap amplitude)
E; I
Aa,
i, - < - > A, (open band amplitude)
E,
G, (gap amplitude)
E, [}
Aa,
i, - -+ - > A, (open band amplitude)
E,
G1 (gap amplitude)
E,

FIG. 1. Schematic of the relationship between certain vari-
ables related to the discrete eigenvalues of periodic spectral
theory for the KdV equation. Graphed vertically along the E
axis are the eigenvalues {E;}, 1<k <2N +1 (which obey the
constraint E; ., > E;), the dimensional IST spectra amplitudes
a;, and average hyperelliptic function amplitudes Z; [Eqs. (2.2)].
The open band amplitudes A4; (2.8) and gap amplitudes G; (2.7)
are also shown.
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associated with the wave numbers k; (2.3). The inverse
scattering transform constitutes the determination of the
hyperelliptic functions p1;(x,0) from the set { E; } and the
reconstruction of the wave train 7(x,0) by (2.1). We now
discuss some of the details of this formalism.

B. The direct scattering transform

The set of discrete eigenvalues {E;} are constants of
the motion for KdV and can be determined directly from
a given wave train 71(x,0). The procedure for a discrete
wave train [24,26,39] is briefly summarized.

We assume that the continuous function 7(x,0) is
periodic, n(x,0)=x(x +L,0), and is discretized into M

|

values at small intervals Ax in the spatial variable x; this
gives discrete (piecewise constant) amplitudes {7,,] at
coordinate values {x,,}, x,, =mAx, 1 <m <M. In order
to construct the IST of a wave train on the periodic inter-
val it is convenient to first construct IST on the infinite
line. To this end the spectral matrix M(k) is defined for a
localized wave on the infinite line, i.e., n(x,t)—0 as
|x|— oo for all t. For a discrete wave train M(k) is given
analytically by

M
M(k)= T] AT, (X1 EmrEm+1) » (2.9)

m=0

where the matrix AT,, has the form

(1+§m +1/§m)exp[l(§m +1_§m )xr'n] (l—_gm +1/§m)exp[—'l(§m+l+§m )xr’n]

ATm(xr,n’gmigm +1)=_;' (1__

and
L =10, +K7172,
X, =x, tAx /2 .

(2.11)
(2.12)

The wave number « is either real (« =k /2, radiation spec-
trum) or imaginary (k=iK,, the discrete or soliton spec-
trum, where 1 <n <N, N being the number of solitons).

The DST periodic spectrum is determined from the so-
called monodromy matrix T of periodic theory, which
may be computed directly from the infinite-line spectral
matrix M [23,24]. The expression for T in terms of M is
given by

—ikL
M e
ikL
M,e

—ikL
M,e

T(E)= Myt

(2.13)
It is understood that M is associated with an infinite-line
wave train 7(x,t) which is truncated so as to lie precisely
on the interval (0,L) [23,24]. The construction of the
nonlinear Fourier spectrum is divided into a “main spec-
trum” (E,, 1 =k =<2N +1) which is the solution to

(E;}:

J —;—TrT=%(T11+T22)=:t1

(2.14)

and an “auxiliary spectrum” [;(0,0), 0;==%1, 1 <j = N]
which arises as solutions to

{.U«jo}i T +Ty»—Ty,—T,=0,
{Uj}=[58n[T12+T21]E—yj} .

The mathematical meaning of the o; is given below with
regard to (2.16).

Procedurally one first computes from an input discrete
wave train {7, ] the monodromy matrix T(E)
[(2.9)—(2.13)] and the trace of the monodromy matrix,
A(E)=1TrT(E), as a function of E =«?% this allows
determination of the main spectrum as defined by
A(E)==1 (2.14). The {E,} are thus the points of inter-
section of A(E) with £1 and they are numerically found

(2.15)

gm +1/§m)exp[i(§m+1+§m )xr,n] (l+§m +1/§m)exp[—i(§m +1_§m )xr,n] ’

(2.10)

by Newtonian iteration [24,33]. Once the {E,} are
known, the nonlinear Fourier amplitudes a; and wave
numbers k; are computed by (2.2) and (2.3). The auxili-
ary spectrum consists of finding the phases u;(0,0) and
the indices o ; by (2.15). It is worth noting that numerical
computation of the monodromy matrix (2.9)-(2.13) re-
quires special consideration as described in detail else-
where [26,39].

C. The inverse scattering transform

The inverse scattering transform consists of using the
{E} to compute the hyperelliptic functions u;(x,0) [by
(2.16)] and to reconstruct the wave train by the linear su-
perposition law (2.1). The functions u; evolve in space
according to the following system of coupled, nonlinear,
ordinary differential equations,

2N +1 12
duy ko 2.16)
dx IT (v —p) ’
k=1
(k)

where 1 =j<N. The o;=x=1 are the signs of the square
root of the numerator of (2.16). The u; evolve on two-
sheeted Riemann surfaces such that the branch points
connecting the surfaces correspond to an open band
(Eyj,E,j 1), formed from two adjacent eigenvalues. The
u; lie in the intervals E,; =u; <E,; , and oscillate be-
tween these limits as x is varied. When a u; reaches a
band edge (i.e., either E,; or E,; ), the associated o;
changes sign and the motion leaps to the other Riemann
sheet. A numerical procedure for numerically integrat-
ing (2.16) is given in [25]. Formally one must specify the
eigenvalues {E;}, the phases {u;o=p;(0,0)}, and the
Riemann sheet indices {0} in order to integrate (2.16).
The temporal evolution of the u; is determined by the

following ordinary differential equations (ODE’s)
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du;
dt

where p;, =dp; /dx is given by (2.16). Note that An(x,?)
is defined by the series (2.1) and therefore Eqgs. (2.17) are
self-contained. It is worth noting that if the right-hand
side of (2.17) is  written = —c(u;)u;,  for
c(p;j)=—2[An(x,t)—2u;] then this suggests that the
temporal evolution of the u; may be viewed as an N-
dimensional, nonlinear generalization of the method of
characteristics as discussed by Whitham [2].

Solutions to (2.14) and (2.15) constitute the direct
periodic scattering transform. The construction of the hy-
perelliptic functions y;(x,?) as solutions of the nonlinear
OLE’s (2.16) and (2.17) and the determination of solu-
tions of the KdV equation by the superposition formula
(2.1) constitute the inverse periodic scattering transform.
The nonlinear numerical approach given here is com-
pletely analogous to linear Fourier series: (1) the non-
linear Fourier spectrum (2.14) and (2.15) gives the ampli-
tudes a;, phases j(0,0), and sheet indices o j of the KdV
oscillation modes in wave-number space and (2) the
space-time dynamics of the nonlinear modes p;(x,) [Eqgs.
(2.16) and (2.17)] and their linear superposition by a
discrete version of (2.1),

=20 —An(x, )+ 2, s (2.17)

N
A(x,,,t0)=—E +2 3 [p;(x,,,t0)—0;] ,
j=1

1=m=M (2.18)

construct general wave-train solutions to KdV.

In the present application of periodic IST we do not
address the time evolution of the motion as given by
(2.17). Herein we are interested in constructing wave-
train solutions to KdV at a particular fixed time ¢ =0.
The numerical methods employed for the direct algo-
rithm [(2.14 and 2.15)] are discussed by [24,26,39] and for
the inverse problem (2.16) are addressed by [25] and Ap-
pendix B. Extension to the temporal evolution of the u;
as governed by (2.17) is discussed in [32].

D. The single degree-of-freedom solution to KdV

For a single degree of freedom we have N =1 and Egs.
(2.1), (2.16), and (2.17) reduce to

dy,

—dx—z[(El —NE; —p)(E; _#1)]1/2 >

dp, _

- [—An(x,t)+2u luy » (2.19)

3
An(x,0)=— 3 E; +2u,(x) .
k=1
The analytical solution of the first two equations of (2.19)
is [14]
u=—2E,—E;)n*(VE;—E,[x —2(E,+E,+E;)t]
+¢olm}+E,+E, , (2.20)

where

i (2.21

m= E,_E, ' 21)

This expression may be compared with the cnoidal wave

solution (1.2), i.e., (2.20) is just the KdV spectral repre-

sentation of (2.1). Note that the spatial period L, of i, as
m—1(E,—E,) is given by (Ref. [10], 17.3.26)

4
\/Es_El

161n2+21n(E;—E;)—21In(E,—E,)
=~ . (2.22)
\/Ea —E,

It is convenient to think of this formula in the following

way. Given E|,E,,E; let E,—»E, for E,E; fixed, then

the spatial period L, is dominated by the gap amplitude

G,=E,—E,. The modulus may then be written as
E;—E,—G,

=—, 2.23
m E,_E, ( )

L,= K(m)

As G, is made smaller, m — 1 and the solitary wave solu-
tion of KdV is approached. As G, is made larger, m —0
and the solution approaches a sine wave. Thus the pa-
rameter G| controls both the spatial period and the non-
linearity in this simple example.

An alternative perspective is to rewrite the above re-
sults in the following way, explicitly dependent on the
wave amplitude 4, and band gaps G, as defined by (2.7)
and (2.8)

4
L - - @@
' V4,+6,
161n2+21In( 4, +G,)—21In(G,)

K(m)

= —— s (2.24)
VvV A4,+G,

— (2.25)

"4 4G, '
where the associated Ursell number is
34,L?
Ur= 3 (2.26)
2h

These results make clear the dependence of the spatial
period L, (2.24) and the nonlinearity parameter Ur (2.26)
on the nonlinear mode amplitude 4, and gap width G,.
As G;—0 the spatial period L;— « (logarithmically)
and m —1 which is the solitary wave solution of KdV.
In this limit, according to (2.24), G, depends on the Ur-
sell number roughly as

G, ~exp(—LVUr/A) .

The larger the Ursell number is, the smaller G, is.

These results are evidently generalizable to the N-band
case; this interpretation has been verified in N-band nu-
merical simulations of solitons (see [25]) and in the exam-
ples below. Many of these ideas are further exploited in
Appendix A to develop a numerical procedure for gen-
erating commensurable wave numbers k; for given
specified wave amplitudes 4;.



48 NUMERICAL CONSTRUCTION OF NONLINEAR WAVE-TRAIN ... 301

E. Schematic for interpreting periodic IST spectral theory

In Fig. 2 I give an example of a Floquet diagram, i.e.,
the trace of the monodromy matrix A(E) is graphed as a
function of the squared wave number E =k2, in which
the eigenvalues E; [solutions to A(E)==1] are denoted
together with the nonlinear mode amplitudes 4; and gap
amplitudes G; [(2.7) and (2.8)].

Figure 3 gives details of a specific example of the syn-
thesis of a nonlinear wave train for exactly three degrees
of freedom. One first constructs the monodromy matrix
T(E) from 7(x,0) by (2.9)—(2.13) as a function of E =«”.
In panel (a) the trace of the monodromy matrix
A=1TrT is graphed vertically as a function of E. The
“main spectrum” consists of the discrete eigenvalues E,
as found from (2.14) together with the phases
#jo=p;(0,0) and the Riemann sheet indices o; from
(2.15). The trace A(E) oscillates (crosses zero twice) for
each degree of freedom (or oscillation mode) of KdV.
When A(E) stops or “turns around” at either +1 or —1
the oscillation mode has zero amplitude because
E,;=E,;, [see (2.2)]. On the other hand, when A(E)
moves to the right of —1 or the left of +1 a finite ampli-
tude oscillation mode occurs because E,;7E,; ,; in the
present example the modes for j =5, 8, and 12 are seen to
have finite amplitude; all other modes are “degenerate”
(E,;j=E,; ) and therefore have zero amplitude. The
finite-amplitude modes (the “open bands” in the spec-
trum) correspond to the shaded regions in panels (a) and
(b). The hyperelliptic oscillation modes, us(x,0), ug(x,0),
and u;,(x,0) are graphed [by numerical integration of
(2.16)] inside the shaded regions in panel (b). For the
present case it can be seen that the modes are quite dis-
torted from the shape of a simple sinusoid, even for this
mildly nonlinear case. The linear superposition of these
modes via (2.1) gives the solution to the KdV equation
[Fig. 3(c)].

In the above example it would indeed be fortuitous to
determine the IST spectrum of some wave train and to
find exactly three degrees of freedom. On the other hand,
it would be quite useful to have a procedure for con-
structing wave trains with exactly N degrees of freedom.
To this end I consider a nontrivial variation of the above
procedure which I use herein to synthesize nonlinear
wave trains, i.e., N band periodic solutions to KdV are
constructed by selecting specific values for the nonlinear
oscillation mode amplitudes a;, phases p;(0,0), and com-

FIG. 2. Example Floquet diagram A(E) vs E, together with
the “main spectrum” eigenvalues {E} }, the hyperelliptic func-
tion amplitudes { 4}, and band-gap amplitudes {G,}.

004l ()

0.03  Closed

0.02- bands \
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FIG. 3. Schematic for the synthesis of a periodic KdV wave
train using the periodic inverse scattering transform. (a) Flo-
quet spectrum with “open bands” denoted by shaded regions.
(b) Nonlinear (hyperelliptic) oscillation modes of KdV. (c)
Complex wave-train solution to KdV. The linear superposition
(2.1) of these (decidedly nonsinusoidal) modes give the solution
to KdV in (c).

mensurable wave numbers k; =2mj/L. From these the
E, are constructed via numerical implementation of the
Jacobian transformation of algebraic geometry (see Ap-
pendix A). Then the oscillation modes p;(x,0) are found
numerically by the integration of Eq. (2.16) (Appendix B)
and the solution to KdV is found by linear superposition
(2.1). It is worth noting that summing over only a subset
of the N terms in (2.1) (ostensibly to observe either the
solitons or the radiation spectrum in the absence of in-
teractions with the other components) is referred to as
nonlinear filtering [24,32,36].

F. Various approaches for constructing wave trains

Figure 4 gives a schematic of various possibilities for
synthesizing wave trains of KdV using the formulation of
the periodic and/or quasiperiodic inverse scattering
transform. Four methods are given for the specification
of the KdV spectrum, i.e., the eigenvalues {E, }, phases
{p;(0,0)}, and Riemann sheet indices o;, from which
specific wave trains may be synthesized. The hyperellip-
tic oscillation modes are then computed numerically by
(2.16) and their linear superposition gives the solution to
KdV by (2.1) [or more accurately the discrete counter-
part (2.18)]. Each approach is labeled by a number 1-4
in Fig. 4. Approaches 1 and 2 compute hyperelliptic
functions u;(x,0) which are quasiperiodic, while ap-
proaches 3 and 4 generate hyperelliptic functions which
are instead periodic. In approach 1 one arbitrarily selects
the set {E i»1;(0,0),0 j} (while obeying the ordering con-
straint E,; ;| > E,;); since the choice of the {E, | is arbi-
trary, there is no guarantee that the wave numbers k; are
commensurable, and so in general this approach gives
quasiperiodic p;. It then follows that the wave-train
solution to KdV (2.1) is also quasiperiodic for approach
1.

An alternative method is given by approach 2 where
the nonlinear mode amplitudes and average values
{a;,[;} are chosen instead of the {E;}. In this case the
{E;} are subsequently computed by (2.2). It is clear that

J
approach 2 also yields quasiperiodic wave trains since,
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FIG. 4. Schematic of approaches for generating complex
wave-train solutions to the KdV equation. The following con-
straints must hold in the selection of the phases and eigenvalues:
(@) Ezj 41> Ey;and (b) Eyj 1 Sp;(0,0) S Ey;.

once again, the selection of the eigenvalues {E; } is arbi-
trary.

A peripherally related approach would be to choose
the set { 4;,G;} and then to subsequently compute the
{E;} by Egs. (2.7) and (2.8). Once again, due to the arbi-
trariness of the selection procedure, these KdV solutions
are also clearly quasiperiodic. However, this approach,
seemingly a simple extension of the above two methods,
is nevertheless particularly important because it leads
directly to approach 3. It is with this latter method that
the periodic wave trains presented in the present paper
have been generated via the procedure in Appendix A.
In this case one provides the set of amplitudes, wave
numbers, phases, and sheet indices {aj,kj,,uj(0,0),oj}
and then the approach in Appendix A is applied to com-
pute the eigenvalues {E,} in such a way as to guarantee
that the IST wave numbers K; [see Eq. (A4) in Appendix
A] are commensurable. One first computes the
{A4;}=2A{a;} and makes estimates for the ‘“‘starting
values” of the {G,}. One then iterates on the G; to com-
pute a “commensurable set” of the {E,} to ensure that
the p;(x,0) are periodic and consequently the computed
wave train 7(x,0) is also periodic. This procedure may
be somewhat technical to those unfamiliar with the
methods of algebraic geometry and the details have been
deferred to Appendix A.

Finally in approach 4 one provides as input an arbi-
trary wave train 7)(x,0) which is assumed to be periodic
on (0=<x <L). Floquet theory, as represented by (2.14)
and (2.15) automatically gives eigenvalues { E;} with as-

sociated commensurable wave numbers k;, phases

1;(0,0) and sheet indices o;. This method therefore
yields periodic functions p;(x,0) and hence the recon-
structed solution to KdV via (2.1) is also periodic.

It is worthwhile noting that the spirit of the work given
here is based upon the following idea: One specifies the
band edges and the initial conditions of the auxiliary vari-
ables and then solves for the x (and possibly #) dynamics
of the auxiliary variables. This procedure works for the
KdV equation, but it is also known not to work for the
nonlinear Schrodinger equation, another soliton system.
This is because in the latter case one must choose the ini-
tial conditions of the auxiliary variables subject to a con-
straint. No such constraint exists for the KdV equation
[20]. Future applications of the methods given herein to
other soliton wave equations will require consideration of
constraints of this type; in this regard the work of Tracy
is of considerable importance [37,38].

III. EXAMPLES OF NONLINEARLY SYNTHESIZED
WAVE TRAINS

I now give a number of examples of numerically con-
structed KdV wave trains which have from one to eight
degrees of freedom. The wave trains have been selected
to provide some insight into the nonlinear Fourier struc-
ture of the KdV equation. The examples are dimension-
al, with wave-train amplitudes 7(x,0) given in centime-
ters; the water depth 4 is taken to be 5 cm in all cases.
The hyperelliptic function amplitudes are also graphed
dimensicnally; to this end, in this section, we write the di-
mensional exnressions

E]LzEk /A N
W, =24,(x,0) /A ,
B, =2f1,(x,0)/A .

(3.1)

Here E}, u}, and fi; have dimensions in centimeters. The
linear superposition law (2.1), in dimensional form, reads
(upon dropping the primes)

N
nx,)=—E;+ 3 [p;(x,0)—p;] .
i=1

(3.2)

The examples which follow refer to dimensional variables
as defined by (3.1) and (3.2).

A. One degree of freedom

A single-degree-of-freedom solution of the periodic
KdV equation (2.19) and (2.20), e.g., the classical cnoidal
wave, is shown in Fig. 5(a). The lower curve shows the
hyperelliptic function p;(x,0) as it evolves within the lim-
its of its open band (represented by the horizontal dashed
lines); the upper curve (for the one-degree-of-freedom ex-
ample given here) is the solution to the KdV equation,
7(x,0), which is identical to the single u(x,0) [compare
the last of Eq. (2.19) with (2.20)]. Floquet eigenvalues
have been chosen [via (2.20)] to give a wave amplitude of
2.5 cm and a spatial period of 33.33 cm. The Fourier
transform of the wave form is shown in Fig. 5(b). Note
the large number of non-negligible components, particu-
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FIG. 5. A single-band periodic KdV solution, the classical

cnoidal wave (a). The linear Fourier transform of the cnoidal
wave train and its scattering transform (vertical arrow) (b).

larly large-amplitude harmonics, in the Fourier spectrum.
In Fig. 5(b) the KdV IST spectrum is also shown (vertical
arrow); this represents the single cnoidal wave com-
ponent. The scattering transform spectrum is seen to be
considerably simpler than the linear Fourier transform
for this simplest of examples.

B. Soliton plus a sine wave

The nonlinear superposition of a soliton and a sine
wave is shown in Fig. 6. The soliton might more accu-
rately be described as a “soliton train” because the soli-
ton pulse is repeated four times within the selected period
of L =700 cm shown in the figure. Formally each of the
two modes in this example, in the absence of the other, is
a cnoidal wave. For the soliton the modulus m is near to
but slightly less than 1. Since a single pulse of the wave
train is graphically indistinguishable from a soliton on
the infinite interval, we refer to this wave as a soliton
train of period four [the curve labeled u4(x) in Fig. 6] (see
the paper by Ferguson, Flaschka, and McLaughlin [40]
for a fundamental discussion of solitons and soliton trains
for periodic boundary conditions). Generally speaking
the nonlinearity and spatial periodicity of the nonlinear
modes are governed by the value of G; as discussed with
regard to (2.6). In this example for G; small, one finds a
soliton train while for G ; large, one has a sine wave. The
“sine wave” has wave number k; =27j /L for j =32 and
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FIG. 6. A synthesized two-band spatially periodic KdV wave
train: nonlinear superposition of a soliton and sine wave (a).
The linear Fourier transform of the wave train and its scattering
transform (vertical arrows) are shown in (b).

is labeled ps, in Fig. 6. Note that nonlinear interactions
with the soliton train distort the sine wave, e.g., there is a
spatial compression of the sine wave that coincides with
the occurrence of each pulse in the soliton train. The
compression may be interpreted as a “phase shift” of the
sine wave in the vicinity of the soliton (phase shifting in
the context of periodic IST is further discussed in Refs.
[24,32]). The solution 7(x,0) to the KdV equation (linear
superposition of w, and p3,) is shown in the upper graph
of Fig. 6(a). The peaks of the soliton train clearly emerge
above the low-amplitude sine wave. The DST spectrum
(two vertical arrows) and the linear Fourier transform are
shown in Fig. 6(b). For this example the number of
Fourier modes is again quite large compared to the num-
ber of scattering transform modes.

C. A nonlinear beat: two closely spaced nonlinear
oscillation modes

It is well known that a linear beat is the linear super-
position of the two sine waves whose wave numbers
(ky,k,) differ by a small amount Ak,

Ak =k,—k,, k=1k +k,),

where k is the “dominant” wave number. Figure 7 shows
the generalization of this idea to a nonlinear beat for the
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FIG. 7. A two-band solution to KdV corresponding to a
nonlinear beat (a). The linear Fourier transform of the wave
train and its scattering transform (vertical arrows) are shown in
(b).

KdV equation. Two closely spaced nonlinear modes
[123(x) and u,5(x)] are shown in panel (a) of the figure. It
is worth noting that, in spite of the distorted non-
sinusoidal shape of the two nonlinear modes in Fig. 7(a),
the resultant beat is nevertheless quite regular in appear-
ance. The two components of the IST spectrum (vertical
arrows) are shown in Fig. 7(b) together with the linear
Fourier transform. The latter is seen to be rather com-
plex with a central peak near the two IST modes; higher
harmonics as well as low wave-number components (radi-
ation stress) are also present. This example illustrates
once again how a simple scattering transform spectrum
may require a complex linear Fourier spectrum for its
description.

D. Three degrees of freedom

The example of a synthesized three-band, spatially
periodic KdV wave train [Fig. 8(a)] is now considered.
The three lowermost curves show the hyperelliptic func-
tions p(x,0), p,(x,0), and p4(x,0) oscillating in their
respective open bands (represented by the horizontal
dashed lines); the uppermost curve depicts the wave train
7(x,0), which is the sum of the three finite amplitude
u;(x,0). The amplitudes of the p; are, respectively, 2.5,
1.5, and 1.5 cm, and the Floquet eigenvalues were chosen
(see Appendix A) to give commensurable wave numbers
k;=2mj/L for j =6, 9, and 11 over the spatial period of

. x (cm)
10} Frr :
5 (b)
100_
§
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o
E
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FIG. 8. A synthesized three-band spatially periodic KdV
wave train (a). The linear Fourier transform of the wave train
and its scattering transform (vertical arrows) are shown in (b).

200 cm. Note that the shapes of the components deviate
substantially from cnoidal waves. The Fourier transform
of the wave train is given in Fig. 8(b) and is to be con-
trasted to the scattering transform (vertical arrows). As
in the previous examples the Fourier transform has a
spectrum which is quite complex compared to the KdV
oscillation modes.

E. Five degrees of freedom

In Fig. 9 is an example of a synthesized wave train with
five modes. The five lowermost curves show pu;_s(x,0);
the uppermost curve depicts the wave train 7(x,0) result-
ing from the linear superposition of the u;(x,0). The am-
plitudes of the p; components are, respectively, 1.5,
0.666 66, 0.5, 0.333 33, and 1.5 cm, and the Floquet eigen-
values were determined (see Appendix A) to ensure com-
mensurable wave numbers k; with indices j =5, 7, 9, 10,
and 11 within the spatial period of 200 cm. Only the up-
permost component resembles a cnoidal wave; the others
are instead quite deformed from this familiar shape (com-
pare to Fig. 5). The pu;-function oscillation modes are
clearly nontrivial generalizations of the ordinary linear
Fourier (sinusoidal) modes. Figure 9(b) shows the
Fourier transform of the wave train and the scattering
transform is given by the five vertical arrows. The linear
Fourier transform is again seen to be much more complex
than the scattering transform representation.
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FIG. 9. A synthesized five-band spatially periodic KdV wave

train (a). The linear Fourier transform of the wave train and its
scattering transform (vertical arrows) are shown in (b).

F. Eight degrees of freedom

The example of a synthesized eight-band, spatially
periodic KdV wave train is shown in Fig. 10. The eight
lowermost curves are the p;_g(x,0), while the uppermost
curve depicts the KdV wave train 7(x,0). The u; have
been plotted dimensionally with amplitudes given by
4.3333, 3.5, 1.3333, 1.0, 0.5, 0.5, 0.8333, and 1.0 cm,
while the Floquet eigenvalues { E; ] were chosen to give
commensurable wave numbers k; with indices j =41, 55,
65, 86, 91, 100, 104, and 109 over the selected spatial
period of 1000 cm. In Fig. 10(b) the Fourier transform of
the wave form is given together with the scattering trans-
form, which is represented by the vertical arrows. The
Fourier transform is rather broad banded, while the KdV
spectrum has exactly eight components.

IV. SUMMARY AND CONCLUSIONS

Generally speaking, many of the features of linear
Fourier analysis are preserved in the periodic IST formu-
lation for KdV given herein. In effect one invokes pro-
cedure 3 of Fig. 4, and the selected amplitudes, wave
numbers, and phases are all that are necessary to con-
struct a periodic wave train by numerical integration of
the ODE’s (2.16). The amplitudes and wave numbers are
those already familiar to us from linear Fourier theory,
but the phase information is more complex as it is con-
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FIG. 10. A synthesized eight-band spatially periodic KdV
wave train (a). The linear Fourier transform of the wave train
and its scattering transform (vertical arrows) are shown in (b).

tained both in the u j(0,0) and the Riemann sheet indices
0, [23]. Generally speaking, solutions to KdV in the u
representation consist of the linear superposition of the
nonlinear oscillation modes: nonlinear interactions are
manifested as distortions of these modes from the famil-
iar shape of the cnoidal wave. We find, for the cases con-
sidered herein, that many linear Fourier modes are re-
quired to describe a KdV wave train which has instead
only a few IST components. However, it is worthwhile
keeping in mind that the full picture of wave motion de-
scribed by KdV is much more complex. This is because
the KdV mode amplitudes are generally constants of the
motion, while the linear Fourier amplitudes are functions
of both space and time for nonlinear evolution governed
by KdV.

Therefore, an additional important question is: What
happens during the time evolution of a KdV wave train?
Since the KdV mode amplitudes are constants indepen-
dent of space and time, the nonlinear Fourier representa-
tion maintains its simple picture, even during time evolu-
tion, although the physical shape of the KdV modes may
change with time [25,32]. Recent laboratory experiments
substantiate these conclusions [35], e.g., laboratory-
generated shallow-water surface waves are found to have
KdV mode amplitudes which are essentially constants in
space and time, while the linear Fourier amplitudes are
instead strongly dependent on space and time.

The example wave trains considered herein are rela-
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tively simple, but I have not considered soliton interac-
tions in detail, a topic covered elsewhere [24,25,32]. N-
soliton solutions to (2.16) are difficult to compute numeri-
cally due to the presence of large nonlinear interactions.
Except for the case of only one soliton in the IST spec-
trum, no individual Hj function can represent a soliton.
We know of course the theoretical structure of KdV al-
lows for the linear superposition of N y;(x,0) as a repre-
sentation of the interaction of exactly N solitons [24].
Since soliton interactions are highly nonlinear, it is clear
from the outset that the u; functions cannot themselves
generally be solitons (since the u; obey a linear superposi-
tion law while solitons do not). In this case the u;(x,0)
and their ODE’s (2.16) are “nearly singular” in the sense
discussed in Ref. [25]. The p; in two adjacent bands, be-
cause they undergo nonlinear interactions while simul-
taneously obeying a linear superposition law, are phase
locked with each other and actually reach and touch the
band edges at the same instant of their evolution.

The phase locking often seen among the IST com-
ponents suggests that the random-phase approximation,
commonly employed in linear stochastic representations
of ocean waves, is evidently not appropriate for the evo-
lution of nonlinear wave trains for KdV. In view of re-
cent results applying periodic IST in the analysis of
oceanic internal waves [33], surface waves [34], and
laboratory-generated shallow water waves [35], evidently
the search for nonlinear stochastic representations of
complex nonlinear surface wave trains presents open, in-
teresting and challenging problems.
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APPENDIX A: PERIODIC KdV WAVE TRAINS:
COMPUTATION OF COMMENSURABLE
WAVE NUMBERS

This appendix briefly describes the procedure (see Fig.
11) that allows for the construction of a periodic KdV
wave train for a specific number N of nonlinear harmonic
modes. The method is used to compute the examples of
periodic wave trains given in the present paper. The
periodicity condition implies that the wave numbers be
commensurable as given in (2.3). Since, generally speak-
ing, spectral theory for KdV wave trains is quasiperiodic,
the periodicity condition must be viewed as exceptional.
As seen below, specification of commensurable wave
numbers by (2.3) and a subsequent determination of the
associated main spectrum {E;} is an interesting
mathematical and numerical task. Many of the results
are beyond the scope of this paper and only the basic
principles are outlined here; details are given elsewhere
[32]. The procedure given in this appendix is referred to
as ‘“‘approach 3” in Fig. 4. Schematics of the variable

Specify nonlinear mode amplitudesA'i
commensurable wavenumbers kj
and mean level shift E;

(Ay Ky By}

1<j<N

Estimate starting values for {G?)]
- @)
= (G, A, E)
Compute the (E,)
by (2.7), (2.8)

Y

Compute matrix C by
cycle integrals in (1.3)
by procedure of Section I.A.1

v

Compute wavenumbers
{Km = CN‘m}

Iterate on band gaps (Gﬁi))
by equation (A8)

converged?

FIG. 11. Procedure described in Appendix A for computing
commensurable wave numbers. The approach ensures that
wave trains constructed by the methods given herein are period-
ic (rather than quasiperiodic) functions of the spatial variable x.
Note that the flow chart needs to be iterated over all j
(1=<j=N) to include all the degrees of freedom.

definitions are given in Figs. 1-3.

It is well known that the dynamical motion of the u;
functions, as governed by (2.16) and (2.17), may be linear-
ized by means of a Jacobian transformation, which is a
particular case of an Abel mapping (see, for example,
[14,16] and references cited therein). The linearizing
Jacobian transformation maps the pu representation
{(u;(x,1),0;)} (which evolves nonlinearly in space and
time) to new variables {{,,(x,t)} (which evolve linearly in
space time). The solution u(x,t) of the dimensionless
KdV equation

us+o6uu,+u,,, =0

is then expressed in terms of the variables &,, by means of
generalized © functions [41]

2
u(x,t)=25€-)—2 In©(§;, ..., Ey)+const . (A1)
x

The new variables §,, depend linearly on x and ¢ in the
following way:

S (X, 0)=K, X —w,t+7g, , (A2)
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in which §,,, are constants given elsewhere [32], and the
K, and w,, are the wave numbers and frequencies associ-
ated with the matrix coefficients C;,, which are computed
uniquely from the set of eigenvalues {E; } by solving (see
[14])

-1

1 Em—l
C:{ij}zz;r‘ ¢a' IN+1 i7zdE
"I (E —Ek)]
k=1

(A3)

Here {a;} is a canonical set of closed paths (contours or
“cycles” as they are referred to in algebraic geometry)
surrounding each one of the N forbidden bands. The ma-
trix C is square since 1 <m <N and 1=j < N. Explicitly,
one finds for the wave number and frequency in terms of

the matrix elements {C,,, } and eigenvalues {E }

Km:CN,m ’

2N +1 (A4)
wm=8CN—1,m+4CN,m 2 Ek .

k=1

The second equation of (A4) is the generalized dispersion
relation for complex KdV wave trains [in the case N =1
one has K,=C,;, and o,=4 (E,+E,+E;)C;; see
(2.20) for the dimensional form of @;]. It should be clear
that the wave numbers and frequencies {K;,®;} of the ©
functions apply also to the u; representation. It is in this
sense that I now provide numerical methods to compute
the (K;,w;) in such a way as to force commensurability
of the K; [i.e.,, to require that K;=k; as in (2.3)] and
hence to ensure spatial periodicity of KdV wave trains in
the u representation.

Generally speaking K;L =2wn;, so K; is also the wave
number for the u;, in the sense that K;L /2 indicates
how many times each u; oscillates while evolving from x
to x +L in such a way that the index o; changes signs
K;L/m times. This implies that each u; oscillates n;
times within the period L, but does not necessarily mean
that each u; is periodic with period L /n; unless specific
conditions are met to ensure periodicity (commensurabili-
ty of the wave numbers K j) as discussed below. In fact,
developing methods for ensuring periodicity of the u; is

the goal of this appendix.

1. Computing the wave numbers and frequencies {K;,®;}

from the eigenvalues { E, }

The mapping {E;}—{K;,0;} implies that, given the
set { E; }, the quantities K; and w; in (A4) are obtained by
calculating the matrix of integrals in (A3), inverting the
matrix, and then summing the prescribed elements in
(A4). The most difficult steps are the computation of the
cyclic integrals in (A3) and the inversion of the N XN
matrix to obtain C. The (K j»@;) are then easily computed
via (A4). Numerical computation of the cycle integrals is
now discussed in detail.

Calculation of the cycle integrals

To numerically evaluate the integrals of (A3) I deform
the integration contour, make a simple change of vari-
ables, and use a standard variable-step fourth-order in-
tegration scheme incorporating simultaneous implemen-
tation of both Runge-Kutta and Adams-Moulton integra-
tion algorithms [42]. The specific steps are as follows.

(a) Deformation of the contours. The argument of the
integrals (A3) is, for every value of the index m, an
analytical function f,, (E) defined on the Riemann sur-
face I, e.g., over the “cycles” or contour integrals a; sur-
rounding adjacent eigenvalues of an open band
(Eyj,E3j+1).- The points E =E; (k=1,...,2N +1) are
polydromy points at which the integrand goes to «, and
the point E = o is an extra polydromy point with value
0. The integration path a; crosses the real E axis twice,
so that a change of the Riemann sheet has to be taken
into account. Note that due to the analyticity of the
function f,, (E) the contour can be contracted so that it is
infinitesimally close to the open band [E,;,E,; ;] on the
real axis; this gives an integration path symmetrical
about the segment and hence the small loops around the
branch points E,; and E,; ., tend to cancel each other.
The change of Riemann sheet involves the change of sign
of the radical in the denominator of f,(E) and it is
clear that f,(EE&(upper part of the cycle))
=—fr(E*E(lower part of the cycle)). It then follows
that

E,.
b fmEME=2[_ """ Re(f, (E)dE
% 2j

E,.
=2f 7" f(B)E , (AS)

2j
where the two halves of the integration cycle are made in
opposite directions. This last integral is defined in the
Riemann sense, because the integrand f, (E) goes to
infinity at the integration limits as (E -—Ezj)_l/ 2 and
(E—Ej; 4+ )12, but the integral nevertheless converges.

(b) Change of integration variable. The above form is

not yet suitable for numerical integration because the in-
tegrand approaches infinity at the branch points. This
difficulty is overcome with the aid of a simple change of
variables. For numerical purposes the divergence of the
integrand at E =E,; can be overcome by setting [23]

E, .,—E,; E, .,+E,;
E(z)=—2*L 7%  z)+ 21 "2
2 2
=Ma; cos(z)+; (A6)
in the cycle integrals
Em*l
¢aj AN +1 77dE
Il (E—E;)
k=1
. . E(Z)m—l
—2f0 D — zdz . (A7)
II [E(z)—E;]
(k22
(k#2j +1)
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(¢) Numerical integration algorithm. To perform the
integration a standard variable-step, fourth-order, com-
bined Runge-Kutta and Adams-Moulton algorithm has
been exploited [42]. Other integration approaches would
probably work just as well.

2. Computing the eigenvalues { E) } from the amplitudes
and commensurable wave numbers { 4;,k;,E, }

The mapping { 4;,k;,E,} —{E,} defined by (A3) and
(A4) implements the numerical procedure in Appendix
A 3. Here the k; are the wave numbers (assumed com-
mensurable, k;=2wj/L), the amplitudes 4;=2Aq;
=E,;1—E,,;, and E, is the reference energy. The true
analytical inversion of (A3) (i.e., determine the {E;}
given the matrix C or equivalently to determine {E;}
from the { 4;,k;,E}) is rather difficult analytically and I
adopt a numerical method for this purpose. The pro-
cedure may be viewed as a numerical calculation begin-
ning with 2N +1 input eigenvalues values {E, } resulting
in N values of {K;} and N values of {w;] (the one free pa-
rameter is the constant shift of all the { E; }, which I refer
to as E . following Ref. [24]). Other choices of input or
output parameters are also possible; for instance one may
choose to input instead {E,, 4;,G;} to get N values of
the set {K;,;}.

Numerical inversion. What follows is a Newton-
Raphson search procedure for numerical inversion of the
formulas that map DST into the © parameters 7,,(x,0).
In this context the numerical inversion of a function into
its N variables is performed as a gradient search of the
function subjected to N constraints. In each case the
function is calculated using the procedure of Appendix
A 1, then a gradient iteration approach estimates the next
value (approximate first derivatives are obtained by small
variation of the “‘direct” input variables). This inversion
procedure is found to work experimentally up to
N ~20-30, but justification for its convergence is purely
empirical.

3. Iterative determination of the { E; } given
the amplitudes { 4;} and the commensurable
wave numbers {k;}

For each j one defines the nonlinear mode amplitudes
A;=E,;,—E,; (the open bands in the Floquet dia-
gram) and the G;=E,;—E,; , (band-gap amplitudes)
(2.7) and (2.8). Both 4; and G; are always positive, since
generally E,;,;>E,;. The reciprocal wave numbers
1/K; (A4) are the N spatial periods of the hyperelliptic
functions p1;(x,0). Generally speaking the 1/K; are not
commensurable at the beginning of program execution;
the end goal is to generate the commensurable set {K;}
by iteration and hence to render the u; and 7(x,0)
periodic functions. This is done by choosing the set
{Aj,k;,E} as N +1 constant inputs [the wave numbers
k; are given by (2.3)] and the {G,} are N input initial
values to be iterated upon in order to render the wave
numbers commensurable, i.e., one seeks the convergence
{K;}—{k;} during the iteration process.

At each iteration step (labeled ““i ”’) one computes
{G}”’ AjEl}_’{El(ci)] :

The {E{"}—{1/K;"} are determined by the procedure
in Appendix A1l. Each gap amplitude is varied
G{"—>G["8G to evaluate the derivative matrix
D;,, =a( 1/K}’))/8Gm. The iteration is made on the value
of the band-gap amplitudes G }”,

A(1/K) ]”‘
jm

N
(i+1) =G4
G| G| m2:1 G

m

X(1/K,,—1/KS") . (A8)

If G}HI)ZO then its value is left unchanged; otherwise
one computes
G (i+1)— gﬂ .
J 2
The end condition occurs when |1—|k; /K}”H <€ for all
J; the loop is repeated until this condition is met. The
program parameters are € and 8G.

It is worth noting that the general wave-amplitude
dependence in the dispersion relation of the Stokes ex-
pansion (A8) is also seen to occur in the more general
dispersion relation (A4). This is clear because of the am-
plitude and wave-number dependence of the main spec-
trum {E; } as discussed in the above iterative approach.

APPENDIX B: NUMERICAL INTEGRATION
OF THE SPATIAL DEPENDENCE
OF THE HYPERELLIPTIC FUNCTIONS

In general the u;(x,0) are governed by strongly non-
linear, coupled equations (2.16), and as a result their nu-
merical integration requires considerable concern [25,32].
Equations (2.16) depend upon 2N + 1 constants D, which
are obtained from the direct scattering problem as ex-
plained in Sec. II. The numerator in (2.16) may be viewed
as a single-valued analytic function of pu; on a two-
sheeted Riemann surface. The argument of the square
root in (2.16) has 2N +2 branch points, one at infinity
and 2N +1 at p; =E;, where the argument goes to zero.
All the E; are real and just one u; lies in each “open
band” so that consequently E,; <pu; <E,; ., and the spa-
tial derivatives of the p; are all real. Equations (2.16) are
then conveniently written

2N +1 172
H (Ek—y’j)
NP L (B1)
dx U H (/J«,'—,U—j) ’
(i)

where the square root is now considered to be positive
definite, and the constant o j=i1 is an index represent-
ing the sign of the square root, i.e., which of the two
Riemann sheets the derivative lies on. It is for this
reason that I call the o ; the “Riemann sheet indices.”
Note that



48 NUMERICAL CONSTRUCTION OF NONLINEAR WAVE-TRAIN ... 309

N .

sgn | IT (u;—p)) |[=(=1/71, (B2)

i=1

(i#])
In the interval (E,;,E;; ;) the u; must change monoton-
ically while on a particular Riemann sheet. The pu;
change Riemann sheets exactly at a band edge, i.e., either
E,jor Ey; ;. When a u; reaches a band edge the deriva-
tive is exactly zero, du; /dx =0, and higher-order deriva-
tives must be computed in any candidate for a numerical

integrator.
To this end the spatial derivative of (B.1) is
du. N o oui—u IN+1 ‘u:_z
ey BB s B By
dx m=1 Hj " Hm p=1 EP—P’j
(m##j)

where the primes denote spatial derivatives. The above
expression is not particularly convenient for numerical
analysis since the last sum includes a term that becomes
indeterminate (zero over zero) whenever u; reaches a
band edge. An equivalent form which is more convenient
for numerical calculations is

2N +1
II (Ek H’]
" Noopi—u, ZN“(kssp)
uwi=—u > ” ”’" -2 21 X (B4)
- m =
mzh d [Il(“i_“j)
(=)

The numerical algorithm used herein is of second order
and derives from a simple Taylor-series expansion of the
hyperelliptic functions

i) du(x;)

d

/.Lj(x,-+1)=/.tj(x,~)+—dT~ x+—;— (Ax)?,

(BS)
where the first derivative is taken in the form (B.1) and
the second derivative is given by (B.4). The algorithm
has been programmed to be “automatic” in the sense that
the spatial step Ax is varied to maintain a specified input
precision; Ax is found to vary by about six orders of mag-
nitude in order to ensure precise numerical control over
the computation of the u;(x,0) for the most difficult case
of N-soliton interactions.
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